Propiedades de los fluídos


Para entender el comportamiento de los fluidos debemos entender sus propiedades o caracteristicas:

Densidad:
Todos los fluidos, incluido el aire, están formados por un número extremadamente grande de moléculas; todas ellas están ligadas entre sí, y separadas ciertas distancias (no todas iguales); cuanto más unidas están todas las moléculas, decimos que el fluido posee más densidad que otro; lógicamente, un fluido con más densidad que otro, pesa más, por cuanto tiene mayor masa, al tener más moléculas; por otra parte, estas consideraciones, no tiene valor, si no se referencian respecto un volumen; por tanto, definimos densidad, como la cantidad de moléculas por unidad de volumen. Sea “V” el volumen y “m” la masa; la densidad se define como: densidad=m/V.

Unidades de densidad en el Sistema Internacional de Unidades (SI):
kilogramo por metro cúbico (kg/m³).
gramo por centímetro cúbico (g/cm³).
kilogramo por litro (kg/L) o kilogramo por decímetro cúbico. El agua tiene una densidad próxima a 1 kg/L (1000 g/dm³ = 1 g/cm³ = 1 g/mL).
gramo por mililitro (g/mL), que equivale a (g/cm³).

Densidad relativa:

La densidad relativa de una sustancia es la relación existente entre su densidad y la de otra sustancia de referencia; en consecuencia, es una magnitud adimensional (sin unidades). 

Presión: La presión es la magnitud que relaciona la fuerza con la superficie sobre la que actúa, es decir, equivale a la fuerza que actúa sobre la unidad de superficie. Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme y perpendicularmente a la superficie. 

Podríamos decir que existen 2 tipos de presiones: la atmosférica y la no atmosférica.

La presión atmosférica, es la fuerza (o peso) que hay sobre cierto punto o cuerpo, debida a la cantidad de moléculas de aire que hay sobre dicho punto o cuerpo.

Esta columna de aire, se sitúa desde dicho cuerpo, hasta el fin de la atmósfera. Otro de los factores importantes relacionados en cierta forma con la presión, es la altura con respecto al nivel del mar; cuanto más altura tengamos, el aire es menos denso, por tanto la presión atmosférica es menor, y debido a todo ello, un cuerpo pesa menos cuanta a más altura midamos ese peso; recordemos que el peso es una fuerza, que equivale a la masa multiplicada por la aceleración de la gravedad, y se mide en Newtons (no hay que confundir peso y masa).

Por todo lo dicho, a mayor presión, las moléculas de aire están más unidas, la densidad es mayor y de esta forma y como consecuencia de ello, el motor, por ejemplo, es más eficiente.

La fuerza no atmosférica, es la presión relativa; es aquella presión que no tiene en cuenta la presión atmosférica; la suma de ambas, se denomina presión absoluta; la presión relativa, por ejemplo, es la causada por la propia dinámica del aire, y es básica, para poder diseñar un coche de competición, entre otras cosas, porque la presión atmosférica, hagamos lo que hagamos, siempre va estar presente y no podemos prescindir de ella.

Ambas presiones, son las que se encargan de mantener más o menos unidas a las moléculas de aire; de esta forma, al aumentar la presión, aumenta la densidad y viceversa; más adelante, veremos las dependencias entre todas ellas.

Unidades de medida y presión

La presión atmosférica es de aproximadamente de 101.300 pascales (101,3 kPa), a nivel del mar .

En la práctica 10 M.c.a. =1 Bar = 1 Atm = 100 kPa = 1 kg/cm²

Unidades de presión y sus factores de conversión

1 Pa (N/m²)= Pascal
1 bar (daN/cm²) = bar
1 N/mm² = N/mm²
1 kp/m² = kp/m²
1 kp/cm² = kp/cm²
1 atm (760 Torr) = atm
1 Torr (mmHg) = Torr

Las obsoletas unidades manométricas de presión, como los milímetros de mercurio, están basadas en la presión ejercida por el peso de algún tipo estándar de fluido bajo cierta gravedad estándar. Las unidades de presión manométricas no deben ser utilizadas para propósitos científicos o técnicos, debido a la falta de repetibilidad inherente a sus definiciones. También se utilizan los milímetros de columna de agua (mm c.d.a.)

Propiedades de la presión en un medio fluido

1. La fuerza asociada a la presión en un fluido ordinario en reposo se dirige siempre hacia el exterior del fluido, por lo que debido al principio de acción reacción, resulta en una compresión para el fluido, jamás una tracción.

2. La superficie libre de un líquido en reposo (y situado en un campo gravitatorio constante) es siempre horizontal. Eso es cierto sólo en la superficie de la Tierra y a simple vista, debido a la acción de la gravedad no es constante. Si no hay acciones gravitatorias, la superficie de un fluido es esférica y, por tanto, no horizontal.

3. En los fluidos en reposo, un punto cualquiera de una masa líquida está sometida a una presión que es función únicamente de la profundidad a la que se encuentra el punto. Otro punto a la misma profundidad, tendrá la misma presión. A la superficie imaginaria que pasa por ambos puntos se llama superficie equipotencial de presión o superficie isobárica.

Aplicaciones

Frenos hidráulicos

Los frenos hidráulicos de los automóviles son una aplicación importante del principio de Pascal. La presión que se ejerce sobre el pedal del freno se transmite a través de todo el líquido a los pistones los cuales actúan sobre los discos de frenado en cada rueda multiplicando la fuerza que ejercemos con los pies.

Refrigeración

La refrigeración se basa en la aplicación alternativa de presión elevada y baja, haciendo circular un fluido en los momentos de presión por una tubería. Cuando el fluido pasa de presión elevada a baja en el evaporador, el fluido se enfría y retira el calor de dentro del refrigerador. Como el fluido se encuentra en un ciclo cerrado, al ser comprimido por un compresor para elevar su temperatura en el condensador, que también cambia de estado a líquido a alta presión, nuevamente esta listo para volverse a expandir y a retirar calor (recordemos que el frío no existe es solo una ausencia de calor).

Llantas de los automóviles

Se inflan a una presión de 310.263,75 Pa, lo que equivale a 30 psi (utilizando el psi como unidad de presión relativa a la presión atmosférica). Esto se hace para que las llantas tengan elasticidad ante fuertes golpes (muy frecuentes al ir en el automóvil).


Viscosidad:
Cuántas veces hemos confundido densidad y viscosidad; un aceite es menos denso que el agua (por eso flota en ella), pero es más viscoso.

La viscosidad es la resistencia que posee todo fluido a deformarse por la acción de una fuerza cualquiera. No tiene nada que ver con la densidad, que es la que cuantifica la cantidad de moléculas por unidad de volumen; la viscosidad es una propiedad digamos dinámica; mientras no existe movimiento, no se hace patente y no se puede cuantificar.

La viscosidad es la propiedad del aire más importante; sin su existencia, no existiría ningún fenómeno dinámico, tal como la sustentación por ejemplo. Como veremos más adelante, es la responsable directa de la existencia de la llamada capa límite y sin ella, no existirían las fuerzas aerodinámicas; de hecho, las ecuaciones que rigen la dinámica del aire, son muy complejas; para resolverlas, existen muchos procedimientos matemáticos, y uno de ellos, es la simplificación de dichas ecuaciones o modelos matemáticos para que sea más fácil el resolverlos; la simplificación inicial (y burda o irreal) es la de suponer que la viscosidad es nula; bajo esta hipótesis, resulta que las turbulencias no existen; el modelo se podrá entonces resolver, pero no es más que una simplificación, no la realidad; en la vida real, el 99.9% de todas las dinámicas de cualquier fluido, son turbulentas.

La viscosidad la definimos como la inversa de la fuerza (tiempo) que ofrece todo fenómeno al movimiento o evolución temporal; cualquier fluido, intenta alcanzar el estado de mínima energía; un fluido o en general fenómeno, más “perezoso” que otro, tendrá una viscosidad mayor, puesto que le cuesta más alcanzar dicho estado.

Hemos oído hablar o tildar en multitud de ocasiones, al tráfico de automóviles de una ciudad, como viscoso; una de las veces que estuve en una cola de coches, esperando que un semáforo se pusiese en verde para arrancar, observé que pasó cierto tiempo, desde que el disco se puso en verde, hasta que pude mover mi automóvil; si divido dicho tiempo entre la cantidad de coches que tengo delante entre, obtengo “PTr”; éste, es el factor de viscosidad no adimensional; cuanto mayor sea “PTr”, mayor viscosidad tendré.

Medidas de la viscosidad

La viscosidad de un fluido puede medirse por un parámetro dependiente de la temperatura llamado coeficiente de viscosidad o simplemente viscosidad:

Coeficiente de viscosidad dinámico, designado como η o μ. En unidades en el SI: [µ] = [Pa·s] = [kg·m-1·s-1] ; otras unidades:
1 Poise = 1 [P] = 10-1 [Pa·s] = [10-1 kg·s-1·m-1]

Coeficiente de viscosidad cinemático, designado como ν, y que resulta ser igual al cociente del coeficiente de viscosidad dinámica entre la densidad ν = μ/ρ. (En unidades en el SI: [ν] = [m2.s-1]. En el sistema cegesimal es el Stoke(St).

Unidades de viscosidad

En el SIU (Sistema Internacional de Unidades), la unidad física de viscosidad dinámica es el pascal-segundo (Pa·s), que corresponde exactamente a 1 N·s/m² o 1 kg/(m·s).

La unidad cgs para la viscosidad dinámica es el poise (P), cuyo nombre homenajea al fisiólogo francés Jean Louis Marie Poiseuille (1799-1869). Se suele usar más su submúltiplo el centipoise (cP). El centipoise es más usado debido a que el agua tiene una viscosidad de 1,0020 cP a 20 °C.

1 poise = 100 centipoise = 1 g/(cm·s) = 0,1 Pa·s
1 centipoise = 1 mPa·s

Viscosidad cinemática


Se obtiene como cociente de la viscosidad dinámica (o absoluta) y la densidad. La unidad en el SI es el (m²/s). La unidad física de la viscosidad cinemática en el sistema CGS es el stoke (abreviado S o St), cuyo nombre proviene del físico irlandés George Gabriel Stokes (1819-1903). A veces se expresa en términos de centistokes (cS o cSt).

1 stoke = 100 centistokes = 1 cm²/s = 0,0001 m²/s

Comparativa para aplicacion:


Al relacionar estas propiedades tomando en cuenta todas sus variables podemos tener una vision mas clara del comportamiento del aire sobre un coche, dichos parametros son vitales a la hora de diseñar un coche de competicion, debemos tomar en cuenta que la temperatura del aire y la altura son factores influyentes en el desempeño de un vehiculo, y todos estos valores son utilizados por los ingenieros al momento de hacer una simulacion en CFD o tunel de viento.

Tanto la presión, densidad y viscosidad, como otras propiedades quizás menos importantes, están ligadas entre sí; ello significa que el hecho de variar una de ellas, conlleva la variación de las otras; las ecuaciones o expresiones matemáticas que relacionan todas estas variables, se denominan ecuaciones de estado; existen diversos tipos, atendiendo al contexto de trabajo, pero en definitiva, son relaciones entre ellas.

Una de las propiedades o mejor dicho, parámetro no intrínseco al propio fluido, es la temperatura; estas ecuaciones de estado, también dependen de la temperatura.