Principio de Bernoulli




Esquema del Principio de Bernoulli.
Sabemos que existen 3 tipos de energía: la potencial (por cota o altura), la cinética (por velocidad) y la de presión. Por ello, al tener que conservarse, en todo proceso, la cantidad total de energía, la suma de las 3 energías, ha de permanecer constante. Esa es la ecuación o principio de Bernouilli.

Donde:
  • V = velocidad del fluido en la sección considerada.
  • g = aceleración gravitatoria
  • z = altura en la dirección de la gravedad desde una cota de referencia.
  • P = presión a lo largo de la línea de corriente.
  • ρ = densidad del fluido.
Para aplicar la ecuación se deben realizar los siguientes supuestos:
  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona ‘no viscosa’ del fluido.
  • Caudal constante
  • Flujo incompresible, donde ρ es constante.
  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo irrotacional
De esta forma, si la presión aumenta, la velocidad ha de disminuir y viceversa. Por ello todos hemos oído en alguna ocasión: que la presión es inversa a la velocidad.


Esquema del efecto Venturi
El efecto Venturi, también es una consecuencia directa: si en cierto fenómeno por donde pasa el aire, hay un cambio de sección, por ejemplo de mayor a menor, la cantidad de aire que entra ha de ser la misma que la que sale (cosa lógica por otra parte), con lo que por la sección mayor, la velocidad del aire será menor que la velocidad del mismo aire al pasar por la sección menor. Esto es el efecto Venturi: al aumentar la velocidad, la presión disminuye y viceversa.

Esquema del recorrido del flujo de aire en el efecto Venturi
Por tanto, si observamos la imagen siguiente, en la zona “A” la velocidad es mayor, pues ha de recorrer una distancia mayor, con lo que la presión disminuye. Esta depresión “chupa” el ala hacia arriba en este caso, produciéndose sustentación.

Esquema flujo de aire al paso por un ala
En automovilismo, se invierte la figura y se produce así el empuje contra el suelo. Es decir, en la zona “B” la velocidad será mayor, pues habrá de de recorrer una distancia mayor, con lo que la presión disminuirá. Esta depresión “chupará” el ala hacia abajo en este caso, produciéndose así una fuerza de atracción al piso.

Esquema flujo de aire al paso por un alerón

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

De la primera ley de la termodinámica se puede concluir una ecuación estéticamente parecida a la ecuación de Bernouilli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una línea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de energía entre los límites de un volumen de control dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido.

Aplicaciones del Principio de Bernoulli.

Airsoft
Las réplicas usadas en este juego suelen incluir un sistema llamado HopUp que provoca que la bola sea proyectada realizando un efecto circular, lo que aumenta el alcance efectivo de la réplica. Este efecto es conocido como efecto Magnus, la rotación de la bola provoca que la velocidad del flujo por encima de ella sea mayor que por debajo, y con ello la aparición de una diferencia de presiones que crea la fuerza sustentadora, que hace que la bola tarde más tiempo en caer.

Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.


Tubería
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.

Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.


Sustentación de aviones
El efecto Bernoulli es también en parte el origen de la sustentación de los aviones. Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y está angulada respecto a las líneas de corriente incidentes. Por ello, las líneas de corriente arriba del ala están mas juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, se genera una fuerza neta hacia arriba llamada sustentación.


Movimiento de una pelota o balón con efecto
Si lanzamos una pelota o un balón con efecto, es decir rotando sobre sí mismo, se desvía hacia un lado. También por el conocido efecto Magnus, típico es el balón picado, cuando el jugador mete el empeine por debajo del balón causándole un efecto rotatorio de forma que este traza una trayectoria parabólica. Es lo que conocemos como vaselina.


Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.


Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.


Dispositivos de Venturi
En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual esta basado en el principio de Bernoulli.